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In contrast to hydrocarbon oxidation which provides several
important industrial and laboratory processes for the production
of oxygenated compounds,1 the direct synthesis of organoni-
trogen compounds from hydrocarbons remains an attractive but
largely exlusive goal.2-6 The paucity of direct nitrogenation
reactions and mechanistic questions regarding the few known
ones has, in turn, stimulated interest in the chemistry of
organonitrogen metal complexes, including those having amido,7

imido,8 and C-nitroso9 ligands. To date, however, examples
of N-transfer from such complexes to hydrocarbons are rare.10

Following early reports by Sharpless and Mares of stoichio-
metric allylic amination of olefins and acetylenes by LnMoO-
(η2-RNO)9b,c and X(dNTs)2 (X ) S,Se),11 we and others
recently have found that LnMo(VI)O2

12 and Fe(II,III) com-

plexes13 and salts14 catalyzethe allylic amination of olefins by
arylhydroxylamines (eq 1). These catalytic reactions display

unusual and synthetically attractive ene-reaction-type regiose-
lectivity (resulting in double-bond transposition). Mechanistic
studies of the reactions catalyzed by LMo(VI)O215 and (phthal)-
Fe(II)16 point to the intervention of PhNO, a proven enophile,17

as the active aminating agent, accounting for the observed
regioselectivity. However, our initial probe of the aminations
catalyzed by iron salts14 excluded the intermediacy of free
ArNO, suggesting that a coordinated organonitrogen species
could be the active aminating agent. To elucidate the mecha-
nism of these latter reactions we report herein (1) the isolation
and first structural elucidation of a metal complex of a C-nitroso
dimer and (2) evidence that this novel compound is the key
aminating agent in allylic aminations catalyzed by iron salts.

To identify the intermediate iron complex(es) in the FeCl2,3-
catalyzed aminations, preparative reactions of the iron chlorides
with PhNHOH and PhNO were conducted. The reaction of
FeCl2 with PhNO (1:2) in CHCl3 (20 °C) or dioxane (80°C)
produced azoxybenzene and a dark red brown product1 (ca.
50% yield following CH2Cl2/hexane recrystallization) whose IR
spectrum18 suggested the presence of coordinated PhNO (Scheme
1). Compound1was also formed (along with PhNO) and azo-
and azoxybenzene) when FeCl3 and PhNHOH (20°C, CHCl3)
were combined, and most importantly,1 also could be isolated
from the FeCl2-promoted amination reaction of 2-methyl-2-
pentene (2-MP) by PhNHOH (80°C, dioxane, 2 h). The
structure of1‚1.5(CH2Cl2) was established by X-ray diffraction19
and is shown in Figure 1 along with key bond lengths and
angles. Complex1, {Fe[Ph(O)NN(O)Ph]3}[FeCl4]2, is thus
found to consist of tetrahedral Fe(III)Cl4

- anions and a six-
coordinate dication having iron(II) bound through the oxygens
of three azobenzene dioxide ligands. Remarkably, while
C-nitroso compounds are well known to exist as azo dioxide
dimers in the solid state,20 1 proVides the first crystallographi-
cally established metal complex haVing a C-nitroso dimer (azo
dioxide) ligand.21 The distinctly distorted, nonoctahedral cation
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of 1 features planar chelate rings and rather varied Fe-O (2.12
Å av) lengths, but relatively uniform O-N (1.28 Å av) and
N-N (1.29 Å av) bond lengths. Comparison of the N-N and
N-O lengths of1 to typical sp2-sp2 single- and double-bond
values (N-O 1.42 Å, NdO 1.20 Å, N-N 1.36 Å, NdN 1.235
Å)22 and to those of azobenzene dioxide23 (N-O 1.268(4) Å,
N-N 1.321(5) Å) indicates electronically delocalized chelate
rings in1 but rather modest differences in the structure of the
free and coordinated ligand.
In addition to its detection in catalytic reaction mixtures,

several otherexperiments strongly implicate nitrosobenzene
dimer complex1 as the actiVe aminating agent in allylic
aminations catalyzed by iron salts. Firstly, treatment of1with
2-MP (1:25) in dioxane results in smooth conversion, even at
room temperature (8 h) (rapidly at 80°C), to the corresponding
allyl amine (83% yield) with the same distinctive regioselectivity
found in the FeCl2,3-catalyzed reactions (Scheme 2). Moreover,
as found in the FeCl2,3-catalyzed reactions,14 1 aminates olefins
without the intervention of free PhNO since heating1 with an
equimolar mixture of 2-MP and 2,3-dimethylbutadiene (DMB)
produced allylic amination products exclusively, i.e. no Diels-
Alder adduct from DMB and PhNO was detected.24 Finally, 1

was found to catalyze the allylic amination of 2-MP by
PhNHOH (80°C, 8 h, 81% yield) at an initial rate comparable
to (or somewhat faster than) that of the FeCl2-catalyzed reaction.
The following initial observations and features provide some

clues to possible mechanistic pathways: (1) the ene-reaction-
type regioselectivity; (2) the noninvolvement of free PhNO; (3)
the coordinative saturation of the complex ion{Fe(II)[Ph(O)-
NN(O)Ph]3}2+; and (4) the facile, induced exchange of coordi-
nated and free nitrosoarene with1. The latter was demonstrated
by treatment of1 with 3.5 equiv of 2-MeC6H4NO (20 °C,
dioxane, 2 h) after which a 2:3 PhNO/2-MeC6H4NO mixture
was detected by GC. Taking these features into consideration,
we suggest (Scheme 3) that amination by1 may proceed via
initial dechelation of an azo dioxide ligand, generating an
electrophilic nitrosating species (e.g.2) which transfers the
activated ArNO unit to an olefin (free or coordinated) by an
ene-reaction-type process; reduction of the resulting allyl
hydroxylamine by Fe(II) would generate the allyl amine.25

Interception of five-coordinate2 by nitrosotoluene (in the
exchange experiments) could cause release of PhNO from the
dangling chelate arm and subsequent rechelation to form a mixed
nitroso dimer complex.
In summary we have established with1 the first structurally

verified metal complex of a C-nitroso dimer and its unprec-
edented reactivity and selectivity for the allylic N-functional-
ization of olefins. Its involvement as the aminating agent in
FeX2,3-catalyzed allylic amination also has been strongly
implicated. Studies are underway to establish the mechanism
by which1 is formed and how it transfers the imido (or PhNO)
unit to the substrate and to develop enantioselective catalysts
based on1.
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Figure 1. X-ray structure of1‚1.5(CH2Cl2). Selected bond lengths
(Å) and angles (deg): Fe(1)-O(1) 2.107(7), Fe(1)-O(2) 2.083(7), Fe-
(1)-O(3) 2.105(7), Fe(1)-O(4) 2.158(8), Fe(1)-O(5) 2.150(7), Fe-
(1)-O(6) 2.097(7), O(1)-N(1) 1.270(10), N(1)-N(2) 1.300(11), N(2)-
O(2) 1.299(10); O(1)-Fe(1)-O(4) 147.7(3), O(1)-Fe(1)-O(5) 86.1(3),
Fe(1)-O(1)-N(1) 115.9(6), O(1)-N(1)-N(2) 118.1(8), N(1)-N(2)-
O(2) 116.4(7), N(2)-O(2)-Fe(1) 116.4(6); Fe(2)-Cl(1) 2.173(4), Fe-
(2)-Cl(2) 2.213(4), Fe(2)-Cl(3) 2.189(4), Fe(2)-Cl(4) 2.177(4).
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